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Analytic methods are developed for solving the contact problem of the rolling of an elastic cylinder along a visco-elastic layer
bonded to an elastic base with the aim of studying the effect of the mechanical and geometric characteristics of their surface
layers on the contact interaction parameters and the coefficient of rolling friction. A Maxwell model is used to describe the
mechanical properties of the visco-elastic layer. The problem is treated assuming that there is partial siding in the contact area
which makes it possible: to treat the resistance to rolling as the overall result of the manifestation of the imperfect elasticity of
the surface layers of the interacting bodies and sliding friction in the contact area. The solution of the problem of the total sliding
of a cylinder on an elastic base covered with a thin visco-elastic layer is obtained as a special case.

The study of the effects of coatings and various surface films on the contact characteristics and resistance
to motion accompanying the relative rolling or sliding of the interacting surfaces, when their properties
of imperfect elasticity are clearly exhibited, is important in problems of increasing their useful lifetime
and reducing friction and wear.

The stress—strain state of a visco-elastic strip bonded to a visco-elastic half-plane and subjected to
the action of a moving load has been investigated in [1, 2] using the Fourier transform method. A
.,numerical algorithm has been proposed [3] for solving a contact problem involving laminated elastic
and visco-elastic bodies under conditions of rolling friction. However, it is difficult to use this algorithm
when analysing contact characteristics and their dependence on all of the parameters of the problem.
The dependence of the stressed state of a visco-elastic strip on time when a rigid cylindrical punch is
embedded in it has been studied in [4].

1. FORMULATION OF THE PROBLEM

We will consider the contact problem in a planar formulation for an elastic cylinder and a base
consisting of a visco-elastic strip of thickness 4 bonded to an elastic half-plane (Fig. 1). The cylinder
rolls or slides along the base at a constant linear velocity V and angular velocity «. The contacting surface
of the cylinder is described by the function f(x) = x/(2R) (R is the radius of the cylinder).

We introduce a fixed (x’,y’) system of coordinates connected with the base and a moving (x, y) system
of coordinates connected with the moving cylinder. Here

’

X=x+Vt, y=y

For uniform motion of the cylinder, the motion of the medium can be considered to be steady with
respect to the system of coordinates (x, y). In this system of coordinates, the displacements and stresses
do not depend on time explicitly and are functions of the coordinates (x, y).

Boundary conditions. Following Reynolds, we subdivide the contact area (—a, b) into sliding zones
(S) and adhesion zones (4). In the S zones, the sliding friction is modelled using the Coulomb—
Amonton law

IT(x)=up(x) when y=0, xe€S§ (1.1)

where 1(x) and p(x) are the shear and normal stresses on the contact area, respectively. In the 4 zones
the tangential velocities of the contacting points of the cylinder and visco-elastic layer are equal. Hence,
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Fig. 1.

in the (', y’) system of coordinates, the tangential displacements u; and u of the cylinder and the base,
respectively, satisfy the relation

£=V—wR+—d-u—' when y=0, xeA (1.2)
dt dr

In the (x, y) system of coordinates, Eq. (1.2) has the form

_gﬂ+%=—8 when y=0, xeA (8=
ox ox

V—mR) 13)

1%

where 8 is the magnitude of the relative sliding.
Furthermore, in the zones of adhesion 4, the normal and shear stresses are related by the inequality

1T(x)l < up(x) (14)

Note that relation (1.1) holds over the whole of the contact area (—a, b) in the case of complete sliding.
It follows from the contact condition that the relation

0, (x)+ 0, (x)+V3(x) =y —x2 / (2R) (1.5)

is satisfied for all points of the contact area (—a, b). In (1.5), vy, v, and v; are the normal displacements
of the boundary points of the cylinder, of the elastic half-plane and of the layer, respectively (which
are assumed to be positive for each body), and v is the penetration of the cylinder into the base.

It is assumed that the visco-elastic layer is bonded to the elastic half-plane and that the following
boundary conditions holds at the interface (y = h)

u(x, k") =u(x,h*),  o(x,h”)=v(x,h*) (1.6)

p(x, k)= p(x,h*), t(x,h™)=1(x,h*)

A mechanical model of the visco-elastic layer. Assuming that the thickness k of the visco-elastic layer
is much less than the width of the contact area, we shall simulate its normal and tangential compliance
using a one-dimensional Maxwellian model, namely

. 1 1. . 1 1 .
=hl — =hl — ps— 1.7
Uy h( T+ y ‘t), V; h( o p+ r p) Q.7
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where u; and v are the tangential and normal displacements of the boundary of the layer (y = 0) and
Na, An and 1, A, are the visco-clastic characteristics of the layer in the normal and tangentlal directions,
respectively. A similar rod model has been used previously in the case of an elastic base in [5].

In the (x, y) system of coordinates relations (1.7) have the form

9y _ b b &) 1.8
ey (x)+?~r = (1.8)
o0y _ k- h  dp(x)

iy (x)+ T (1.9)

In the model being considered it is assumed that the normal and shear stresses at the upper boundary
of the layer (y = 0) and at the boundary between the layer and the elastic half plane (y = k) have the
same values. The gradient of the displacements of the boundary of the elastic bodies (of the cylinder
and the elastic half-plane) is therefore defined by the following relations (i = 1, 2)

du;

(1=2v,X1+v;) 2(1-v?) ’I’ ‘t(s)

S e .10
dv, _ (1=2v(+v) - 2(-v}) kb p(s)
o E T(x) 7E _Iax_sds (1.11)

Equations (1.8)—(1.11), together with the boundary conditions (1.1), (1.3) and (1.5), are used to find
the normal and shear stresses in the contact area (—a, b).

2. ANALYSIS OF THE CONTACT PRESSURES

In order to simplify the calculations, we shall neglect the effect of the shear contact stresses on the
normal contact stresses. Then, using relations (1.5), (1.9) and (1.11) (the latter is considered for t(x)
= () and introducing the new variable &, which is related to x by the equality

b-a a+b

x=o— = 13
we obtain
L P(c)da
+KP P’ D(L+

_Il oo (&) -—P'(€)=D(L+8) (2.1)

2 (b-a a+b hnE" hnE" a+b b-a
P = - y K=—_—, C=" =" = ) =
®=1F ”( 2 2 g) 2V, 2’ PR a+h

Bearing in mind the condition that the pressure at the ends of the contact area between the cylinder
and the base is equal to zero, that is, P(—1) = P(1) = (0), we transform Eq. (2.1) to a Fredholm equation
of the second kind

jF(o)[lnlE ol+7sgn(§ c)— ln(l+o)—-—2—-ln(l c)+—]do——F(E,) ED

(FE)=P' &) 22)

It follows from the condition of equilibrium of the normal forces applied to the cylinder that the
required function F(£) also satisfies the relation

W= -D} sF(s)ds (23)
-1

where W = 2w/(nRE*) is the dimensionless normal load applied to the cylinder.
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Equations (2.2) and (2.3) are used to find the contact pressure P(£), the size of the contact area D,
the displacement of the contact area L and the maximum penetration of the cylinder into the visco-
elastic layer A,

. -1
PE&)= ? F(o)do, D= —W[ ] pF(p)dp]
] -1

L= ﬁ } F(o)l(1+0)In(1+0)+(1-0)In(l-0)- Koldo 2.4
-1

Apax =maxl)i£—rl= Dmax®E), —-1<&<l

[¢(§)=K[} tF(t)dt+§ ? F(‘t)d‘t:|+—g- } F(‘t)dt]
§ §

Note that, if one neglects the elasticity of the cylinder and the base and determines the pressure in
the region of contact from the solution of Eq. (1.9) with boundary conditions (1.5), we shall have

=D} in L g _cxp&/De) < __nV
P(g)—K[CthDe+§ sh(l/De)] [De KD 7L,,(a+b)) (25)

where De is the Deborah number.

3. ANALYSIS OF THE SHEAR STRESSES IN THE CONTACT AREA

If the normal contact pressures are known, the shear stresses in the contact area can be obtained
from relations (1.1), (1.3), (1.6), (1.8) and (1.10). The following integral equation for determining the
function 1(x) holds in the adhesion zone A

h hodr(x) 2 b (s) __s_2B 11
V'f],‘t(x)-,.lt dx =E _ja x—sds- 5 nE.p(x), xed G-

B=nE"[(1-2v))(1+Vv)/ E —(1=2v,)(1+V,)/ E,]/2

Using the method described above to analyse contact pressures, Eq. (3.1) can be reduced to the form

PE)=0, Eea, (32)
where
G ! K
p(§)=8+BP(§)+—I-)L¢(§)-I Inig —1l+=Lsgn(§ - 1) [@(r)dt
-1
. . 3.3)
, _ 2 (b-a a+b _ IE _hxE
0®=0® 9= {2+ 0) o= K =2E
Moreover, in the adhesion zone A4, the shear stresses satisfy the inequality | g(€) | < pP(E), which
follows from (1.4).

Relation (1.1) serves to determine the tangential stresses in the zones S where sliding occurs.
Furthermore, in these zones, the shear stresses are opposite to the sliding direction, which leads to the
relation

(x) = up(x)sgn(—d‘—::l -%+%+8)

Substituting (1.8) and (1.10) into this and using (3.3), we obtain
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q(§)=pPE&)sgnp(§), §eS (34)

The continuity equation

q€)=uPE) i=12,...k (3.5)

holds at the points & where one zone changes into another.

Equations (3.2), (3.4) and (3.5) are used to find the shear stresses in the contact area and, also, the
positions and dimensions of the zones where there is adhesion and sliding. An iterative process was
used for the numerical analysis of the equations obtained.

The problem of finding the shear stresses is simplified considerably by assuming that 2AJE* <1 and
B = 0. In this case, Egs (3.2) and (3.4) reduce to the following equations

g(&)—-De, L‘i =B, te Ag (3.6)
q(E.)=uP(§)ssn[-q(§)+De1%+B], fes; (3.7)

2V 23V
De,=——%_, B="—3¢
( T Ala+b) hrE )
Analysis of Eqs (3.6) and (3.7) shows that, in the case being considered, the contact area is subdivided
into two zone (adhesion and sliding) or three zones (sliding, adhesion and sliding).

In the case where there are two zones the shear stresses in the contact area are defined by the
expression

HPE), Ee(-1§)
q(&)= [K(x) = CXP(D%'D (3.8)
B(1-x(E-1). Ee(.D *

and the transition point &, is found from the relation
B(1-x(§, -1))=pP(&,) (3.9)
This case occurs if
De . wP’'(1-0)+B<0 (3.10)

In the opposite case, that is, when there are three zones, we have the following expression for
determining the shear stresses

_[WPE), Ee(-1E)UE.D
"@'{BﬂuP(éz)—le(t-éz), Ee @ity 3.11)
where &; and &, are the solution of the equations
B+[uP(E,) - B, -&;) =uPE,) (3.12)
pPE,)-B-pDe, P'(§;)=0 (3.13)

When there is no visco-elastic layer, only two zones (adhesion and sliding) exist in the contact area
when an elastic cylinder rolls over a base made of the same material (B = 0).
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4. ANALYSIS OF THE ROLLING RESISTANCE

A rolling cylinder is acted upon by a normal active load w and a tangential active load Q, a moment
m and, also, the reactions of the base w, and Q; which arise as the result of the action of the normal
and shear stresses in the contact area (Fig. 1). The equation

b
m-— [ xp(x)dx+QR=0

follows from the condition of equilibrium of the forces and moments.
Using the notation introduced in (2.1) and (3.3), we obtain the following expressions for the
dimensionless magnitudes of the resistive force and moment of rolling friction

=22 __pi o 2m Db kL REME-
T=—t= D_[l§¢(§)dg, M=—er=—= _JI E+L) FE)dE-T (4.1)

The first (or second) equation of (4.1) can also be used to find the magnitude of the relative sliding
8 (1.3), if the value of the tangential force T (or the moment M) is known.

When T = uW, sliding occurs over the whole contact area. The case when T = 0 corresponds to pure
rolling. The coefficient of rolling friction is found from the relation

e = MIW (4.2)

where the values of M and W are found using the second formula in (4.1) and formula (2.3) respectively.

5. RESULTS OF CALCULATIONS

Graphs of the contact pressure function p(€)/po (po is the Hertz maximum contact pressure) constructed for
.C = 0.1, D = 0.1 and different values of the parameter K are shown in Fig. 2. The solid curves correspond to the
general case of the contact interaction of elastic bodies when there is a visco-elastic layer between them, and
the dashed curves were constructed using formula (2.5) in the case when the elastic properties of the indentor
and the base are neglected. The results show that, as the velocity V' of displacement of the indentor decreases, that
is, as the parameter K increases (see 2.1)), the curve representing the pressure distribution under the punch becomes
more asymmetric. For a fixed size of the contact area and specified visco-elastic characteristics of the layer, the
contact pressures and their maximum values depend very much on the elastic properties of the indentor and
the base at translational velocities corresponding to small values of K. However, when the velocity decreases
(K = 10), the difference between the pressure distribution in the two cases becomes negligibly smail. Hence, a
visco-elastic layer mainly influences the contact pressure distribution at low velocities of motion.

Graphs of the dimensionless length D/D, of the contact area (D, is the dimensionless length of the contact area
in the case of the Hertz formulation, Dy = (2W)'?), its displacement L and the maximum penetration Ay, (2.4)
of the cylinder into the visco-elastic layer against the parameter C/K when W = 0.001 for C = 1 (curve 1) and C
= 0.1 (curve 2) are plotted in Fig. 3. The parameter C/K = n,V/(A,R) depends on the relaxation time n,/A, and
the velocity V. It is seen that, as the parameter C/K increases, the length of the contact area decreases and tends
to a constant value (D = 1.49 Dy and D = 2.71 Dy when C = 0.1 and C = 1, respectively). For small values of
the parameter C/K, the length of the contact area increases considerably, especially as the parameter C increases
(Fig. 3a). We note that the parameter C depends on the thickness of the layer and the relative elastic characteristics
of the layer and the base. As the relaxation time becomes shorter and the translational velocity of the indentor
decreases, that is, as the parameter C/K decreases, there is an increase in the displacement L of the contact area
(Fig. 3b) and the maximum penetration Ap,, of the cylinder into the visco-elastic layer (Fig. 3b), which is due to
the manifestation of the visco-elastic properties of the intermediate layer. In the case of an increase in the parameter
CI/K, the displacement of the contact area becomes negligibly small for all values of the parameter C.

The results of the calculations of the shear stresses in the contact area between a rolling cylinder and a base
with a surface layer on it, based on an analysis of Eqs (3.2), (3.4) and (3.5), are shown in Fig. 4. The properties of
the surface visco-elastic layer in this analysis are described by the parameter 8 = n,A,,/(n,A,) which is the ratio of
the relation times in the tangential and normal directions (6 = C,K/(CK;)) and, also, by the dimensionless parameter
C; (3.3), which depends on the relative thickness of the layer and the relative elastic characteristics of the layer
and the base. Plots of the distributions of the tangential contact stresses were constructed for the following values
of the dimensionless parameters C = 0.1, K = 1, W = 0.01, =01, C; = 0.1. Curve 1 corresponds to T = 0.6uW,
0=01,p=-04,curve2to T = 0.8uW,0 = 1,8 = 04, curve 3to T = 08uW,0=01p=-04,curve 4to T
=08uW,0=0.1,=04and curve 5to T = pW.

The results show that, as the parameter 9 increases, there is an increase in the values of the maximum shear
stresses in the contact area and a decrease in the size of the adhesion zone. Furthermore, it was established that,
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as the value of the tangential force 7' becomes smaller, the contact passes from a completely sliding contact (curve
5) to the three-zone and, then, to the two-zone cases. The same results were obtained qualitatively in calculations
using formulae (3.8)3.13) for the special case of identical elastic characteristics of the cylinder and the base (B
= 0) and A/E* < 1. With the same layer characteristics (C, = 0.1 and 8 = 0.1), a change in the relative elastic
characteristics of the cylinder and the base from §§ = —0.4 (curve 3) to § = 0.4 (curve 4) leads to a transition from
a three-zone contact to a two-zone contact.

Graphs of the coefficient of rolling friction, calculated using formula (4.2), against the dimensionless para-
meter C/K for W = 0.001 and T = 0 are also shown in Fig. 4. The coefficient of rolling friction for the model of a
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6. CONCLUSIONS

The following conclusions can be drawn from the results of the analytic and numerical analysis of
the solution of the contact problem on the rolling (sliding) of an elastic cylinder along the boundary
of a visco-elastic layer lying on an elastic support.

1. The normal and shear stresses in the contact area can be described using the dimensionless
parameters C, K, 0, Cy, B, u, W, T.

2. The ranges of variation of the parameters C, K, 6 and C, describing the relative properties of the
visco-elastic layer, for which the thin surface layer has a substantial effect on the contact characteristics
have been established.

3. As the sliding velocity increases, the effect of the properties of the surface layer on the contact
characteristics decreases.

4. The elastic characteristics of the indentor and the base turn out to have a relatively substantial
effect on the distribution of the normal and shear stresses in the contact area, which means that they
should be taken into account when formulating the problem.

This research was carried out with the financial support of the Russian Foundation for Basic Research
(94-01-00386-a).
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